题意
有 $n$ 种卡片,每次购买有 $p_i$ 的概率买到第 $i$ 种,求使得每种都买到的期望购买次数。
$1 \leq n \leq 20$
题解
考虑 Min - Max 容斥。
此时,$\displaystyle E\left(\min\left(S\right)\right) = \frac1{\sum\limits_{i \in S} p_i}$。
因为,买卡正好买到集合 $S$ 中的概率就是 $\displaystyle \sum\limits_{i \in S} p_i$,而期望次数就是它的倒数。
直接套用 Min - Max 容斥公式即可。
$$E\left(\max\left(S\right)\right) = \sum\limits_{T \subseteq S, T \neq \emptyset} \left(-1\right)^{\left\lvert T \right\rvert - 1} E\left(\min\left(T\right)\right)$$
代码
// Please submit with C++17! It's best to use C++20 or higher version.
// By Koicy (https://koicy.ly)
// rbtree (i@koicy.ly)
// This is my kingdom code.
// #define EFILE ""
#include <algorithm>
#include <array>
#include <cmath>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <utility>
#include <vector>
#define _CONSOLE 0
using namespace std;
using tp = long long;
constexpr tp ZERO = 0, ONE = 1, INF32 = -1u >> 2, INF = -1ull >> 2;
// :/
void MIST() {
}
double tar;
tp n;
vector<double> p;
void STRUGGLING([[maybe_unused]] tp TEST_NUMBER) {
while (cin >> n) {
tar = 0;
p.resize(n);
for (tp i = 0; i < n; ++i) cin >> p[i];
for (tp i = 1, ei = 1ll << n; i < ei; ++i) {
double sum = 0;
tp cnt = 0;
for (tp j = 0; j < n; ++j) {
if (i >> j & 1) { ++cnt; sum += p[j]; }
}
if (cnt % 2 == 0) sum *= -1;
tar += 1 / sum;
}
cout << fixed << setprecision(6) << tar << '\n';
}
}
#include <fstream>
signed main() {
tp t = 0, _t = 1;
cin.tie(0)->sync_with_stdio(0);
#if !_CONSOLE
#ifdef _LOCAL
static ifstream _in("input.txt");
cin.rdbuf(_in.rdbuf());
#else
#ifdef EFILE
static ifstream _in(EFILE ".in");
static ofstream _out(EFILE ".out");
cin.rdbuf(_in.rdbuf());
cout.rdbuf(_out.rdbuf());
#endif
#endif
#endif
// cin >> _t;
MIST();
while (t < _t) STRUGGLING(++t);
return 0;
}
//*/
- 分类: 做题笔记
- 最后更新于:2024-02-01 10:38:12UTC+8
- 标签: Min - Max 容斥