
Natural Proofs

Miguel Romero

June 19, 2012

Why are circuit lower bounds so difficult?

Natural proofs:

Why are circuit lower bounds so difficult?

Natural proofs:

Demonstrate that known methods are inherent too weak to prove
strong circuit lower bounds.

Why are circuit lower bounds so difficult?

Natural proofs:

Why are circuit lower bounds so difficult?

Natural proofs:

◮ All known circuit lower bound proofs are natural.

Why are circuit lower bounds so difficult?

Natural proofs:

◮ All known circuit lower bound proofs are natural.

◮ No natural proofs can prove polynomial lower bounds for
general circuits

Why are circuit lower bounds so difficult?

Natural proofs:

◮ All known circuit lower bound proofs are natural.

◮ No natural proofs can prove polynomial lower bounds for
general circuits (modulo widely believed cryptographic
assumptions).

Why are circuit lower bounds so difficult?

Natural proofs:

◮ All known circuit lower bound proofs are natural.

◮ No natural proofs can prove polynomial lower bounds for
general circuits (modulo widely believed cryptographic
assumptions).

We use computational complexity to shed light on a
metamathematical question about computational complexity.

Related work

Limits of diagonalization and relativizing methods.

Theorem (Baker, Gill, Solovay 75’)

There exists oracles A, B such that PA=NPA and PB 6=NPB .

Outline

Motivation

Circuit Complexity
Definitions
Circuit lower bounds

Definition of natural proof

Non existence of natural proof

Recent work

Outline

Motivation

Circuit Complexity
Definitions
Circuit lower bounds

Definition of natural proof

Non existence of natural proof

Recent work

Basic definitions

f (x1, x2, x3, x4) = (x1 ∧ ¬x2 ∧ x3) ∨ ¬(x3 ∧ ¬x4)

Basic definitions

Circuit parameters:

◮ Number of inputs

◮ Size (number of vertices)

◮ Depth (longest directed path from an input node to the
output node).

Basic definitions

Circuit parameters:

◮ Number of inputs

◮ Size (number of vertices)

◮ Depth (longest directed path from an input node to the
output node).

Different models of circuits:

◮ Bounded-unbounded fan-in.

◮ Monotone circuits.

◮ Additional gates (MODm gates, majority gates,...).

Circuit-based complexity classes

Let {Cn} be a circuit family where Cn has n inputs.

Definition (language recognition)

Let L ⊆ {0, 1}∗ be a language. We say that {Cn} decides L if for
every x ∈ {0, 1}n

x ∈ L ⇐⇒ Cn(x) = 1

Restriction on circuit families

Let {Cn} be a circuit family and T : N → N be a function:

Definition (family size and depth)

We say that {Cn} has size (depth) T (n) if for every n, the size
(depth) of Cn is at most T (n).

Restriction on circuit families

Let {Cn} be a circuit family and T : N → N be a function:

Definition (family size and depth)

We say that {Cn} has size (depth) T (n) if for every n, the size
(depth) of Cn is at most T (n).

Another important restriction:

Definition (uniformity)

We say that {Cn} is uniform if there exists a polynomial time TM
that on input 1n outputs (a representation of) Cn.

Some complexity classes

AC0: Languages decided by circuit families of O(poly(n)) size,
O(1) depth and unbounded fan-in.

Some complexity classes

AC0: Languages decided by circuit families of O(poly(n)) size,
O(1) depth and unbounded fan-in.

ACC0[m]: Languages decided by circuit families of O(poly(n))
size, O(1) depth, unbounded fan-in and MODm gates.

Some complexity classes

AC0: Languages decided by circuit families of O(poly(n)) size,
O(1) depth and unbounded fan-in.

ACC0[m]: Languages decided by circuit families of O(poly(n))
size, O(1) depth, unbounded fan-in and MODm gates.

ACC0 =
⋃

m>1ACC
0[m]

Some complexity classes

AC0: Languages decided by circuit families of O(poly(n)) size,
O(1) depth and unbounded fan-in.

ACC0[m]: Languages decided by circuit families of O(poly(n))
size, O(1) depth, unbounded fan-in and MODm gates.

ACC0 =
⋃

m>1ACC
0[m]

AC0 (ACC0

Some complexity classes

TC0: Languages decided by circuit families of O(poly(n)) size,
O(1) depth, unbounded fan-in and MAJORITY gates.

Some complexity classes

TC0: Languages decided by circuit families of O(poly(n)) size,
O(1) depth, unbounded fan-in and MAJORITY gates.

NC1: Languages decided by circuit families of O(poly(n)) size,
O(logn) depth and bounded fan-in.

Some complexity classes

TC0: Languages decided by circuit families of O(poly(n)) size,
O(1) depth, unbounded fan-in and MAJORITY gates.

NC1: Languages decided by circuit families of O(poly(n)) size,
O(logn) depth and bounded fan-in.

P/poly: Languages decided by circuit families of O(poly(n)) size.

Some complexity classes

TC0: Languages decided by circuit families of O(poly(n)) size,
O(1) depth, unbounded fan-in and MAJORITY gates.

NC1: Languages decided by circuit families of O(poly(n)) size,
O(logn) depth and bounded fan-in.

P/poly: Languages decided by circuit families of O(poly(n)) size.

AC0 (ACC0 ⊆ TC0 ⊆ NC1 ⊆ P/poly

ACC0 ⊆ TC0

We want to simulate MODm gates using majority gates. W.l.o.g.
assume n is even (otherwise, add an extra input with the constant
0).

MODm(x1, ..., xn) =
∨
{#k(x1, ..., xn) : 0 ≤ k ≤ n,m divides k}.

where #k outputs 1 iff there is exactly k 1’s in the inputs.

#k(x1, ..., xn) = Thk(x1, ...xn) ∧ ¬Thk+1(x1, ..., xn).

where Thk(x1, ..., xn) outputs 1 iff there is at least k 1’s in the
inputs.

ACC0 ⊆ TC0

Finally, we can simulate Thk gates using majority gates.

If k ≤ n/2, then Thk(x1, ...xn) = MAJORITY (x1, ..., xn, 1, ..., 1)
where the additional number of 1’s in the input is n − 2k .

If k > n/2, then Thk(x1, ...xn) = MAJORITY (x1, ..., xn, 0, ..., 0)
where the additional number of 0’s in the input is 2k − n.

Still polynomial size and constant depth.

Outline

Motivation

Circuit Complexity
Definitions
Circuit lower bounds

Definition of natural proof

Non existence of natural proof

Recent work

Proving P 6= NP

Researchers moved from relativizing methods to circuit lower
bounds.

Theorem

P ⊆ P/poly

Proving P 6= NP

Researchers moved from relativizing methods to circuit lower
bounds.

Theorem

P ⊆ P/poly

So, it suffices to prove:

NP * P/poly

Proving P 6= NP

There was some reasons to think that NP * P/poly.

Proving P 6= NP

There was some reasons to think that NP * P/poly.

Theorem (Karp-Lipton 80’)

If NP ⊆ P/poly, then PH=Σp
2 .

Proving P 6= NP

There was some reasons to think that NP * P/poly.

Theorem (Karp-Lipton 80’)

If NP ⊆ P/poly, then PH=Σp
2 .

Theorem (Shannon 49’)

For every n > 1, there exists a function f : {0, 1}n → {0, 1} that
cannot be computed by a circuit C of size 2n/(10n).

Proving P 6= NP

Main Idea:

◮ Prove lower bounds for restricted classes of circuit.

◮ Extend techniques to general circuits.

Some circuit lower bounds

Theorem (Furst,Saxe,Sipser 81’ - Ajtai 83’)

PARITY /∈ AC0

Some circuit lower bounds

Theorem (Furst,Saxe,Sipser 81’ - Ajtai 83’)

PARITY /∈ AC0

Theorem (Razborov 85’)

There is no polynomial sized family of monotone circuits for
CLIQUE.

Some circuit lower bounds

Theorem (Furst,Saxe,Sipser 81’ - Ajtai 83’)

PARITY /∈ AC0

Theorem (Razborov 85’)

There is no polynomial sized family of monotone circuits for
CLIQUE.

Theorem (Razborov 87’- Smolensky 87’)

For distinct primes p and q, the language MODp is not in ACC0[q].

Some circuit lower bounds

Theorem (Furst,Saxe,Sipser 81’ - Ajtai 83’)

PARITY /∈ AC0

Theorem (Razborov 85’)

There is no polynomial sized family of monotone circuits for
CLIQUE.

Theorem (Razborov 87’- Smolensky 87’)

For distinct primes p and q, the language MODp is not in ACC0[q].

The project ground to a halt at the class ACC0...

Outline

Motivation

Circuit Complexity
Definitions
Circuit lower bounds

Definition of natural proof

Non existence of natural proof

Recent work

Natural property

Fn denotes the set of all boolean functions in n variables. A
property P of boolean functions is a family {Pn ⊆ Fn}n≥1.

Natural property

Fn denotes the set of all boolean functions in n variables. A
property P of boolean functions is a family {Pn ⊆ Fn}n≥1.

Definition (Natural property)

A property P = {Pn} is natural if satisfies the following two
conditions:

◮ Constructiveness: There is an 2O(n) time algorithm that on
input (the truth table of) a function g : {0, 1}n → {0, 1}
outputs P(g).

◮ Largeness: Prg∈RFn [P(g) = 1] ≥ 1/n, for sufficiently large n.

Natural property

Let C be a complexity class.

Definition (usefulness)

A property P = {Pn} is useful against C if for any family of
function {fn} (with fn ∈ Fn) where Pn(fn) = 1 happens infinitely
often, then {fn} /∈ C.

Natural property

Let C be a complexity class.

Definition (usefulness)

A property P = {Pn} is useful against C if for any family of
function {fn} (with fn ∈ Fn) where Pn(fn) = 1 happens infinitely
often, then {fn} /∈ C.

Any language in C ”is not” in the property P .

Natural proof

What is a natural proof?

”Definition”

A natural proof is any proof that use (explicitly or implicitly) a
natural property.

”There exists (no) natural proofs ...” = ”There exists (no) natural
property P ...”

Examples

1. Pn(g) = 1 iff g has circuit complexity more than nlog n.

2. Pn(g) = 1 iff g correctly solves 3SAT on inputs of size n.

PARITY /∈ AC0 is natural

The proof defines the following natural property useful against AC0

(where k(n) is an appropriate function):

Pn(g) = 1 iff there is no restriction of the variables with k(n)
unassigned variables which forces g to be a constant function.

PARITY /∈ AC0 is natural

The proof defines the following natural property useful against AC0

(where k(n) is an appropriate function):

Pn(g) = 1 iff there is no restriction of the variables with k(n)
unassigned variables which forces g to be a constant function.

Almost all circuit lower bounds are natural.

Outline

Motivation

Circuit Complexity
Definitions
Circuit lower bounds

Definition of natural proof

Non existence of natural proof

Recent work

Negative results

Theorem (Razborov, Rudich 96’)

Suppose that subexponentially strong one-way functions exists.
Then there is no natural property useful against P/poly.

Proof of the Theorem

The existence of subexponentially strong one-way functions implies
the existence of subexponentially strong pseudorandom function

families

That is, a family {fs}s∈{0,1}∗ , where for s ∈ {0, 1}m , fs is a
function from {0, 1}m to {0, 1}, and satisfies the following
conditions:

1. There is a polynomial-time algorithm that given s, x outputs
fs(x).

2. fs(·) for s ∈R {0, 1}m cannot be distinguished from a random
function in Fm by 2m

ε
- algorithms, for some fixed constant ε.

Proof of the Theorem

Suppose there exists natural property P useful against P/poly. We
construct the following algorithm A with oracle access to a
function h:

1. On input 1m define n = ⌈mε/2⌉.

2. Construct the truth table of g(x) = h(x0m−n).

3. Output P(g).

Proof of the Theorem

Suppose there exists natural property P useful against P/poly. We
construct the following algorithm A with oracle access to a
function h:

1. On input 1m define n = ⌈mε/2⌉.

2. Construct the truth table of g(x) = h(x0m−n).

3. Output P(g).

A runs in 2m
ε
-time and breaks {fs}s∈{0,1}∗

Proof of the Theorem

Running time:

1. On input 1m define n = ⌈mε/2⌉.

2. Construct the truth table of g(x) = h(x0m−n) 2O(n).

3. Output P(g) 2O(n) (constructiveness condition) .

Proof of the Theorem

Running time:

1. On input 1m define n = ⌈mε/2⌉.

2. Construct the truth table of g(x) = h(x0m−n) 2O(n).

3. Output P(g) 2O(n) (constructiveness condition) .

A runs in time 2O(n) = 2O(mε/2) = O(2m
ε
).

Proof of the Theorem

A breaks {fs}s∈{0,1}∗ means:

AdvA(m) = |Prr∈RFm [A
r (1m) = 1]− Prs∈R{0,1}m [A

fs(·)(1m) = 1]|
is non-negligible.

A function ǫ : N → [0, 1] is negligible if for all c > 0, ǫ(m) < 1/mc

for sufficiently large m.

Proof of the Theorem

Suppose A has access to a random function r ∈ Fm, then g is
random in Fn.
Using the largeness condition:

Prr∈RFm [A
r (1m) = 1] = Prg∈RFn [Pn(g) = 1] ≥ 1/mε/2 for

sufficiently large m.

Proof of the Theorem

Suppose A has access to fs(·), where s is random in {0, 1}m.

Since fs(x) is computable in polynomial time in s and x , it follows
that can be computed by a polynomial sized circuit family. Using
that P is useful against P/poly we have that for sufficiently large
m it holds that

∀s ∈ {0, 1}m fs(·, 0
m−n) is not in Pn

Therefore, for those m’s

Prs∈R{0,1}m [A
fs(·)(1m) = 1] = 0

We conclude that

AdvA(m) ≥ 1/mε/2 for sufficiently large m. Then AdvA(m) is
non-negligible.

Outline

Motivation

Circuit Complexity
Definitions
Circuit lower bounds

Definition of natural proof

Non existence of natural proof

Recent work

Limits of natural proofs

AC0 (ACC0 ⊆ TC0 ⊆ NC1 ⊆ P/poly

Even classes like TC0 and NC1 contain plausible pseudorandom
functions. Thus natural proofs useful against TC0 or NC1 are
unlikely to exist.

Limits of natural proofs

AC0 (ACC0 ⊆ TC0 ⊆ NC1 ⊆ P/poly

Even classes like TC0 and NC1 contain plausible pseudorandom
functions. Thus natural proofs useful against TC0 or NC1 are
unlikely to exist.

There is little evidence that ACC0 contains pseudorandom
functions.

Thus natural proofs useful against ACC0 can exists.

Limits of natural proofs

AC0 (ACC0 ⊆ TC0 ⊆ NC1 ⊆ P/poly

Even classes like TC0 and NC1 contain plausible pseudorandom
functions. Thus natural proofs useful against TC0 or NC1 are
unlikely to exist.

There is little evidence that ACC0 contains pseudorandom
functions.

Thus natural proofs useful against ACC0 can exists.

but, there wasn’t any strong ACC0 lower bound.

Limits of natural proofs

Theorem (R. Williams 11’)

NEXP * ACC0

Use non natural arguments (diagonalization). Although it’s not
clear that natural proof should considered a barrier for ACC0.

Another related works

◮ Algebrizing techniques (A. Wigderson 08’).

◮ Alternating-Trading proofs for Time-Space lower bounds (S.
Buss, R. Williams 11’).

Natural Proofs

Miguel Romero

June 19, 2012

	Motivation
	Circuit Complexity
	Definitions
	Circuit lower bounds

	Definition of natural proof
	Non existence of natural proof
	Recent work

