Natural Proofs

Miguel Romero

June 19, 2012

Natural proofs:

Natural proofs:

Demonstrate that *known* methods are inherent too weak to prove strong circuit lower bounds.

Natural proofs:

Natural proofs:

> All known circuit lower bound proofs are natural.

Natural proofs:

- All known circuit lower bound proofs are natural.
- No natural proofs can prove polynomial lower bounds for general circuits

Natural proofs:

- ► All known circuit lower bound proofs are natural.
- No natural proofs can prove polynomial lower bounds for general circuits (modulo widely believed cryptographic assumptions).

Natural proofs:

- ► All known circuit lower bound proofs are natural.
- No natural proofs can prove polynomial lower bounds for general circuits (modulo widely believed cryptographic assumptions).

We use computational complexity to shed light on a metamathematical question about computational complexity.

Limits of diagonalization and relativizing methods.

Theorem (Baker, Gill, Solovay 75')

There exists oracles A, B such that $P^A = NP^A$ and $P^B \neq NP^B$.

Outline

Motivation

Circuit Complexity

Definitions Circuit lower bounds

Definition of natural proof

Non existence of natural proof

Recent work

Outline

Motivation

Circuit Complexity Definitions Circuit lower bound

Definition of natural proof

Non existence of natural proof

Recent work

Basic definitions

 $f(x_1, x_2, x_3, x_4) = (x_1 \land \neg x_2 \land x_3) \lor \neg (x_3 \land \neg x_4)$

Basic definitions

Circuit parameters:

- Number of inputs
- Size (number of vertices)
- Depth (longest directed path from an input node to the output node).

Basic definitions

Circuit parameters:

- Number of inputs
- Size (number of vertices)
- Depth (longest directed path from an input node to the output node).

Different models of circuits:

- Bounded-unbounded fan-in.
- Monotone circuits.
- Additional gates (MOD_m gates, majority gates,...).

Circuit-based complexity classes

Let $\{C_n\}$ be a circuit family where C_n has *n* inputs.

Definition (language recognition) Let $L \subseteq \{0,1\}^*$ be a language. We say that $\{C_n\}$ decides L if for every $x \in \{0,1\}^n$

 $x \in L \iff C_n(x) = 1$

Restriction on circuit families

Let $\{C_n\}$ be a circuit family and $T : \mathbb{N} \to \mathbb{N}$ be a function:

Definition (family size and depth)

We say that $\{C_n\}$ has size (depth) T(n) if for every *n*, the size (depth) of C_n is at most T(n).

Restriction on circuit families

Let $\{C_n\}$ be a circuit family and $T : \mathbb{N} \to \mathbb{N}$ be a function:

Definition (family size and depth)

We say that $\{C_n\}$ has size (depth) T(n) if for every *n*, the size (depth) of C_n is at most T(n).

Another important restriction:

Definition (uniformity)

We say that $\{C_n\}$ is *uniform* if there exists a polynomial time TM that on input 1^n outputs (a representation of) C_n .

 $ACC^{0}[m]$: Languages decided by circuit families of O(poly(n)) size, O(1) depth, *unbounded* fan-in and MOD_{m} gates.

 $ACC^{0}[m]$: Languages decided by circuit families of O(poly(n)) size, O(1) depth, *unbounded* fan-in and MOD_{m} gates.

 $ACC^0 = \bigcup_{m>1} ACC^0[m]$

 $ACC^{0}[m]$: Languages decided by circuit families of O(poly(n)) size, O(1) depth, *unbounded* fan-in and MOD_{m} gates.

 $ACC^0 = \bigcup_{m>1} ACC^0[m]$

 $\mathsf{AC^0} \subsetneq \mathsf{ACC^0}$

Some complexity classes

TC⁰: Languages decided by circuit families of O(poly(n)) size, O(1) depth, *unbounded* fan-in and MAJORITY gates.

TC⁰: Languages decided by circuit families of O(poly(n)) size, O(1) depth, *unbounded* fan-in and MAJORITY gates.

NC¹: Languages decided by circuit families of O(poly(n)) size, O(logn) depth and *bounded* fan-in.

TC⁰: Languages decided by circuit families of O(poly(n)) size, O(1) depth, *unbounded* fan-in and MAJORITY gates.

NC¹: Languages decided by circuit families of O(poly(n)) size, O(logn) depth and *bounded* fan-in.

P/poly: Languages decided by circuit families of O(poly(n)) size.

TC⁰: Languages decided by circuit families of O(poly(n)) size, O(1) depth, *unbounded* fan-in and MAJORITY gates.

NC¹: Languages decided by circuit families of O(poly(n)) size, O(logn) depth and *bounded* fan-in.

P/poly: Languages decided by circuit families of O(poly(n)) size.

 $\mathsf{AC}^0 \subsetneq \mathsf{ACC}^0 \subseteq \mathsf{TC}^0 \subseteq \mathsf{NC}^1 \subseteq \mathsf{P/poly}$

$\mathsf{ACC}^0 \subseteq \mathsf{TC}^0$

We want to simulate MOD_m gates using majority gates. W.l.o.g. assume *n* is even (otherwise, add an extra input with the constant 0).

$$MOD_m(x_1, ..., x_n) = \bigvee \{ \# k(x_1, ..., x_n) : 0 \le k \le n, m \text{ divides } k \}.$$

where #k outputs 1 iff there is exactly k 1's in the inputs.

$$\#k(x_1,...,x_n) = Th_k(x_1,...x_n) \land \neg Th_{k+1}(x_1,...,x_n).$$

where $Th_k(x_1, ..., x_n)$ outputs 1 iff there is at least k 1's in the inputs.

Finally, we can simulate Th_k gates using majority gates.

If $k \le n/2$, then $Th_k(x_1, ..., x_n) = MAJORITY(x_1, ..., x_n, 1, ..., 1)$ where the additional number of 1's in the input is n - 2k. If k > n/2, then $Th_k(x_1, ..., x_n) = MAJORITY(x_1, ..., x_n, 0, ..., 0)$ where the additional number of 0's in the input is 2k - n.

Still polynomial size and constant depth.

Outline

Motivation

Circuit Complexity Definitions Circuit lower bounds

Definition of natural proof

Non existence of natural proof

Recent work

Researchers moved from relativizing methods to circuit lower bounds.

Theorem

 $P \subseteq P/poly$

Researchers moved from relativizing methods to circuit lower bounds.

Theorem

 $\mathsf{P}\subseteq\mathsf{P}/\mathsf{poly}$

So, it suffices to prove:

 $\mathsf{NP} \nsubseteq \mathsf{P}/\mathsf{poly}$

There was some reasons to think that NP \nsubseteq P/poly.

There was some reasons to think that NP \nsubseteq P/poly.

Theorem (Karp-Lipton 80')

If NP \subseteq P/poly, then PH= Σ_2^p .

There was some reasons to think that NP \nsubseteq P/poly.

Theorem (Karp-Lipton 80')

If NP \subseteq P/poly, then PH= Σ_2^p .

Theorem (Shannon 49')

For every n > 1, there exists a function $f : \{0,1\}^n \to \{0,1\}$ that cannot be computed by a circuit C of size $2^n/(10n)$.

$\mathsf{Proving}\;\mathsf{P}\neq\mathsf{NP}$

Main Idea:

- Prove lower bounds for restricted classes of circuit.
- Extend techniques to general circuits.

Theorem (Furst,Saxe,Sipser 81' - Ajtai 83') PARITY ∉ AC⁰

Theorem (Furst,Saxe,Sipser 81' - Ajtai 83') PARITY ∉ AC⁰

Theorem (Razborov 85')

There is no polynomial sized family of *monotone* circuits for CLIQUE.

Theorem (Furst,Saxe,Sipser 81' - Ajtai 83') PARITY ∉ AC⁰

Theorem (Razborov 85')

There is no polynomial sized family of *monotone* circuits for CLIQUE.

Theorem (Razborov 87'- Smolensky 87')

For distinct primes p and q, the language MOD_p is not in $ACC^0[q]$.

Theorem (Furst,Saxe,Sipser 81' - Ajtai 83') PARITY ∉ AC⁰

Theorem (Razborov 85')

There is no polynomial sized family of *monotone* circuits for CLIQUE.

Theorem (Razborov 87'- Smolensky 87')

For distinct primes p and q, the language MOD_p is not in $ACC^0[q]$.

The project ground to a halt at the class ACC⁰...

Outline

Motivation

Circuit Complexity

Definitions Circuit lower bounds

Definition of natural proof

Non existence of natural proof

Recent work

Natural property

 \mathcal{F}_n denotes the set of all boolean functions in *n* variables. A property *P* of boolean functions is a family $\{P_n \subseteq \mathcal{F}_n\}_{n \ge 1}$.

Natural property

 \mathcal{F}_n denotes the set of all boolean functions in *n* variables. A property *P* of boolean functions is a family $\{P_n \subseteq \mathcal{F}_n\}_{n \ge 1}$.

Definition (Natural property)

A property $P = \{P_n\}$ is *natural* if satisfies the following two conditions:

- Constructiveness: There is an 2^{O(n)} time algorithm that on input (the truth table of) a function g : {0,1}ⁿ → {0,1} outputs P(g).
- ▶ Largeness: $Pr_{g \in_R \mathcal{F}_n}[P(g) = 1] \ge 1/n$, for sufficiently large *n*.

Let \mathcal{C} be a complexity class.

Definition (usefulness)

A property $P = \{P_n\}$ is useful against C if for any family of function $\{f_n\}$ (with $f_n \in \mathcal{F}_n$) where $P_n(f_n) = 1$ happens infinitely often, then $\{f_n\} \notin C$.

Let C be a complexity class.

Definition (usefulness)

A property $P = \{P_n\}$ is useful against C if for any family of function $\{f_n\}$ (with $f_n \in \mathcal{F}_n$) where $P_n(f_n) = 1$ happens infinitely often, then $\{f_n\} \notin C$.

Any language in C "is not" in the property P.

Natural proof

What is a natural proof?

"Definition"

A natural proof is any proof that use (explicitly or implicitly) a natural property.

"There exists (no) natural proofs ..." = "There exists (no) natural property P ..."

Examples

P_n(g) = 1 iff g has circuit complexity more than n^{log n}.
P_n(g) = 1 iff g correctly solves 3SAT on inputs of size n.

The proof defines the following natural property useful against AC^0 (where k(n) is an appropriate function):

 $P_n(g) = 1$ iff there is no restriction of the variables with k(n) unassigned variables which forces g to be a constant function.

The proof defines the following natural property useful against AC^0 (where k(n) is an appropriate function):

 $P_n(g) = 1$ iff there is no restriction of the variables with k(n) unassigned variables which forces g to be a constant function.

Almost all circuit lower bounds are natural.

Outline

Motivation

Circuit Complexity

Definitions Circuit lower bounds

Definition of natural proof

Non existence of natural proof

Recent work

Negative results

Theorem (Razborov, Rudich 96')

Suppose that subexponentially strong one-way functions exists. Then there is no natural property useful against P/poly.

The existence of subexponentially strong one-way functions implies the existence of subexponentially strong *pseudorandom function families*

That is, a family $\{f_s\}_{s \in \{0,1\}^*}$, where for $s \in \{0,1\}^m$, f_s is a function from $\{0,1\}^m$ to $\{0,1\}$, and satisfies the following conditions:

- 1. There is a polynomial-time algorithm that given s, x outputs $f_s(x)$.
- 2. $f_s(\cdot)$ for $s \in_R \{0,1\}^m$ cannot be distinguished from a random function in \mathcal{F}_m by $2^{m^{\varepsilon}}$ algorithms, for some fixed constant ε .

Suppose there exists natural property P useful against P/poly. We construct the following algorithm A with oracle access to a function h:

- 1. On input 1^m define $n = \lceil m^{\varepsilon/2} \rceil$.
- 2. Construct the truth table of $g(x) = h(x0^{m-n})$.
- 3. Output P(g).

Suppose there exists natural property P useful against P/poly. We construct the following algorithm A with oracle access to a function h:

- 1. On input 1^m define $n = \lceil m^{\varepsilon/2} \rceil$.
- 2. Construct the truth table of $g(x) = h(x0^{m-n})$.
- 3. Output P(g).

 \mathcal{A} runs in $2^{m^{\varepsilon}}$ -time and breaks $\{f_s\}_{s\in\{0,1\}^*}$

Running time:

- 1. On input 1^m define $n = \lceil m^{\varepsilon/2} \rceil$.
- 2. Construct the truth table of $g(x) = h(x0^{m-n})$ $2^{O(n)}$.
- 3. Output $P(g) = 2^{O(n)}$ (constructiveness condition).

Running time:

- 1. On input 1^m define $n = \lceil m^{\varepsilon/2} \rceil$.
- 2. Construct the truth table of $g(x) = h(x0^{m-n})$ $2^{O(n)}$.
- 3. Output $P(g) = 2^{O(n)}$ (constructiveness condition).

 \mathcal{A} runs in time $2^{O(n)} = 2^{O(m^{\varepsilon/2})} = O(2^{m^{\varepsilon}}).$

 ${\mathcal A}$ breaks $\{f_s\}_{s\in\{0,1\}^*}$ means:

 $\mathsf{Adv}_{\mathcal{A}}(m) = |\mathsf{Pr}_{r \in_{\mathcal{R}} \mathcal{F}_m}[\mathcal{A}^r(1^m) = 1] - \mathsf{Pr}_{s \in_{\mathcal{R}} \{0,1\}^m}[\mathcal{A}^{f_s(\cdot)}(1^m) = 1]|$ is non-negligible.

A function $\epsilon : \mathbb{N} \to [0,1]$ is *negligible* if for all c > 0, $\epsilon(m) < 1/m^c$ for sufficiently large m.

Suppose A has access to a random function $r \in \mathcal{F}_m$, then g is random in \mathcal{F}_n .

Using the largeness condition:

 $Pr_{r \in_{\mathcal{R}} \mathcal{F}_m}[\mathcal{A}^r(1^m) = 1] = Pr_{g \in_{\mathcal{R}} \mathcal{F}_n}[P_n(g) = 1] \ge 1/m^{\varepsilon/2}$ for sufficiently large m.

Suppose A has access to $f_s(\cdot)$, where s is random in $\{0,1\}^m$.

Since $f_s(x)$ is computable in polynomial time in s and x, it follows that can be computed by a polynomial sized circuit family. Using that P is useful against P/poly we have that for sufficiently large m it holds that

$$\forall s \in \{0,1\}^m$$
 $f_s(\cdot,0^{m-n})$ is not in P_n

Therefore, for those m's

$$Pr_{s \in R\{0,1\}^m}[\mathcal{A}^{f_s(\cdot)}(1^m) = 1] = 0$$

We conclude that

 $\operatorname{Adv}_{\mathcal{A}}(m) \geq 1/m^{\varepsilon/2}$ for sufficiently large m. Then $\operatorname{Adv}_{\mathcal{A}}(m)$ is non-negligible.

Outline

Motivation

Circuit Complexity

Definitions Circuit lower bounds

Definition of natural proof

Non existence of natural proof

Recent work

$\mathsf{AC}^0 \subsetneq \mathsf{ACC}^0 \subseteq \mathsf{TC}^0 \subseteq \mathsf{NC}^1 \subseteq \mathsf{P}/\mathsf{poly}$

Even classes like TC^0 and NC^1 contain plausible pseudorandom functions. Thus natural proofs useful against TC^0 or NC^1 are unlikely to exist.

$\mathsf{AC}^0 \subsetneq \mathsf{ACC}^0 \subseteq \mathsf{TC}^0 \subseteq \mathsf{NC}^1 \subseteq \mathsf{P}/\mathsf{poly}$

Even classes like TC^0 and NC^1 contain plausible pseudorandom functions. Thus natural proofs useful against TC^0 or NC^1 are unlikely to exist.

There is little evidence that ACC⁰ contains pseudorandom functions.

Thus natural proofs useful against ACC⁰ can exists.

$\mathsf{AC}^0 \subsetneq \mathsf{ACC}^0 \subseteq \mathsf{TC}^0 \subseteq \mathsf{NC}^1 \subseteq \mathsf{P}/\mathsf{poly}$

Even classes like TC^0 and NC^1 contain plausible pseudorandom functions. Thus natural proofs useful against TC^0 or NC^1 are unlikely to exist.

There is little evidence that ACC⁰ contains pseudorandom functions.

Thus natural proofs useful against ACC⁰ can exists.

but, there wasn't any strong ACC⁰ lower bound.

Theorem (R. Williams 11')

 $\mathsf{NEXP} \nsubseteq \mathsf{ACC^0}$

Use non natural arguments (diagonalization). Although it's not clear that natural proof should considered a barrier for ACC^0 .

Another related works

- Algebrizing techniques (A. Wigderson 08').
- Alternating-Trading proofs for Time-Space lower bounds (S. Buss, R. Williams 11').

Natural Proofs

Miguel Romero

June 19, 2012

